1.证明下列题目:1.) sin78度+cos132度=sin18度2.) cos15度+sin15度/cos15度-s

1个回答

  • 1(1)

    sin78°+cos132°

    =sin78°-sin42°

    =2cos60°sin18°

    =sin18°

    (2)

    (cos15°+sin15°)/(cos15°-sin15°)

    =(sin75°+sin15°)/(sin75°-sin15°)

    =(2sin45°cos30°)/(2cos45°sin30°)

    =cot30°

    =√3

    2、x+y+z =π

    sin(x+y)=sin(π-z)=sinz

    cos(x+y)=cos(π-z)=-cos z

    sin2x+sin2y+sin2z

    =2sin(x+y)cos(x-y)+sin2z

    =2sinzcos(x-y)+2sinzcosz

    =2sinz[cos(x-y)+cosz]

    =(2sinz)×[2cos(x+z-y)/2][cos(x-y-z)/2]

    =(4sinz)cos(π/2-y)cos(π/2-x)

    =(4sinz)(siny)(sinx)

    =4sinxsinysinz

    3、sinx+sin(x+2π/3)+sin(x+4π/3)

    =sinx+2sin(x+π)cos(π/3)

    =sinx+(-sinx)

    =0