由韦达定理知:
z1+z2=z1+z1^2∈R
z1z2=z1^3∈R
设z1=r(cost+isint) (sint≠0,r>0)
则sint+rsin(2t)=0 (1)
sin(3t)=0 (2)
由(2)知t=kπ/3
由(1)知cost=-1/(2r)
试验k=1,2,3得t=2π/3,r=1
所以z1=-1/2+√3/2i
z2=-1/2-√3/2i
由韦达定理知:
z1+z2=z1+z1^2∈R
z1z2=z1^3∈R
设z1=r(cost+isint) (sint≠0,r>0)
则sint+rsin(2t)=0 (1)
sin(3t)=0 (2)
由(2)知t=kπ/3
由(1)知cost=-1/(2r)
试验k=1,2,3得t=2π/3,r=1
所以z1=-1/2+√3/2i
z2=-1/2-√3/2i