t(1)=a(1)=1-a(1),a(1)=1/2=t(1).
t(n)=1-a(n)
a(n)=1-t(n)
a(n+1)=1-t(n+1)
a(n+1)t(n)=[1-t(n+1)]t(n)=t(n+1)
若t(n+1)=0,则,t(n)=0,...,t(1)=0,与t(1)=1/2矛盾.
因此,t(n)不等于0.
[1-t(n+1)]t(n)=t(n+1)
1/t(n+1)-1=1/t(n)
1/t(n+1)=1/t(n) + 1
{1/t(n)}是首项为2,公差为1的等差数列.
1/t(n)=2+n-1=n+1
t(n)=1/(n+1)
a(n)=1-t(n)=1-1/(n+1)=n/(n+1)