解题思路:(1)电子在电场中受到电场力而加速,根据牛顿第二定律和运动学公式结合求解电子经过直线MN时速度大小;电子进入磁场后,由洛伦兹力提供向心力,由牛顿第二定律求解电子在磁场中运动的轨道半径,然后求出AC间的距离;
(2)分别求出电子在电场中匀加速运动时间和磁场中匀速圆周运动的时间.电场中,由运动学公式求解时间,磁场中根据轨迹的圆心角求解时间.
(1)电子从A达MN界做匀加速直线运动,
由牛顿第二定律得:eE=ma,解得:a=[eE/m],
由速度-位移关系式得:v2=2ad,解得:v=
2eEd
m,
粒子进入磁场后做匀速圆周运动,由洛伦兹力提供向心力,
根据牛顿第二定律得:evB=m
v2
r,解得:r=[1/B]
2mEd
e,
AC两点间的距离:s=2r=[2/B]
2mEd
e;
(3)电子从A到MN边界的过程做匀加速直线运动,
由匀变速直线运动的位移公式得:d=[1/2]at12,解得:t1=
2md
eE;
在磁场中运行半周时间:t2=[1/2]T=[1/2]×[2πm/eB]=[πm/eB],
电子从直线MN到C做匀减速直线运动,运动时间:t3=t1=
点评:
本题考点: 带电粒子在匀强磁场中的运动;带电粒子在匀强电场中的运动.
考点点评: 本题中电子先在电场中加速后在磁场中做匀速圆周运动,由牛顿第二定律和运动学公式结合进行研究.也可以根据动能定理求解加速获得的速度.