解:从AB的中点E,作EG垂直CD于G,则点G为CD的中点.
设AE=EB=m,则CG=DG=m,设DF=X,则EF=CF=2m+X;
EG^2+GF^2=EF^2,即(2m)^2+(m+X)^2=(2m+x)^2, 2mx=m^2, x=(1/2)m;
故DF/AE=[(1/2)m]/m=1/2.
AB平行于DF,则⊿AEP∽⊿DFP,S⊿AEP/S⊿PDF=(DF/AE)^2=1/4,即:S⊿AEP=4S⊿PDF
解:从AB的中点E,作EG垂直CD于G,则点G为CD的中点.
设AE=EB=m,则CG=DG=m,设DF=X,则EF=CF=2m+X;
EG^2+GF^2=EF^2,即(2m)^2+(m+X)^2=(2m+x)^2, 2mx=m^2, x=(1/2)m;
故DF/AE=[(1/2)m]/m=1/2.
AB平行于DF,则⊿AEP∽⊿DFP,S⊿AEP/S⊿PDF=(DF/AE)^2=1/4,即:S⊿AEP=4S⊿PDF