lim[√(n+2) - √(n+1) + √n]
n→∞
∵lim[√(n+2) - √(n+1)]
n→∞
= lim[√(n+2)-√(n+1)][√(n+2)+√(n+1)]/[√(n+2)+√(n+1)] [分子有理化]
n→∞
= lim 1/[√(n+2)+√(n+1)]
n→∞
= 1/[√∞+√∞]
= 1/∞
= 0
∴lim[√(n+2) - √(n+1) + √n]
n→∞
= lim[0 + √n]
n→∞
= ∞
lim[√(n+2) - √(n+1) + √n]
n→∞
∵lim[√(n+2) - √(n+1)]
n→∞
= lim[√(n+2)-√(n+1)][√(n+2)+√(n+1)]/[√(n+2)+√(n+1)] [分子有理化]
n→∞
= lim 1/[√(n+2)+√(n+1)]
n→∞
= 1/[√∞+√∞]
= 1/∞
= 0
∴lim[√(n+2) - √(n+1) + √n]
n→∞
= lim[0 + √n]
n→∞
= ∞