1、由于A^3-2A^2+9A-E=0
所以A^3-2A^2+9A=E
所以A(A^2-2A+9E)=E
所以|A|0,所以A可逆,并且A的逆矩阵就是A^2-2A+9E
2、由于A^3-2A^2+9A-E=0
所以A^2(A-2E)+9(A-2E)=-17E
所以(A^2+9E)(A-2E)=-17E
所以A-2E可逆,且A-2E的逆矩阵是:-(A^2+9E)/17
1、由于A^3-2A^2+9A-E=0
所以A^3-2A^2+9A=E
所以A(A^2-2A+9E)=E
所以|A|0,所以A可逆,并且A的逆矩阵就是A^2-2A+9E
2、由于A^3-2A^2+9A-E=0
所以A^2(A-2E)+9(A-2E)=-17E
所以(A^2+9E)(A-2E)=-17E
所以A-2E可逆,且A-2E的逆矩阵是:-(A^2+9E)/17