解题思路:(1)球首先从甲手中传出,则第二个拿到球的是乙或丙,从乙的手中接到球的是甲或丙,从丙的手中拿到球的是甲或乙,这样
完成了第二轮传球,第三轮和前两轮类似.
(2)第3次球恰好传回给甲的事件为A,由(I)可知满足条件的共有两种情况,而总的事件数是8,根据古典概型公式代入数据,得到结果.
(I)用甲→乙→丙→甲表示一种传球方法
所有传球方法共有:
甲→乙→甲→乙;甲→乙→甲→丙;甲→乙→丙→甲;甲→乙→丙→乙;
甲→丙→甲→乙;甲→丙→甲→丙;甲→丙→乙→甲;甲→丙→乙→丙;
则共有8种传球方法.
(Ⅱ)记求第3次球恰好传回给甲的事件为A,
由(I)可知共有两种情况,
,而总的事件数是8,
∴P(A)=
2
8=
1
4.
点评:
本题考点: 等可能事件的概率.
考点点评: 高中必修中学习了几何概型和古典概型两种概率问题,解题时,先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.