fn+1=2/[fn(x)+1] f1(2)=2/3 a1=-1/8,f2(2)=6/5,a2=1/16,f3(2)=10/11,a3=-1/32,所以通式an=(-1)^n*1/[2^(n+2)];a99=-1/2^101;(说明:2^n,2的n次方
f1(x)=2/(x+1),而fn+1=f1[fn(x)],设an=[fn(2)-1]/[fn(2)+2],则a99=
1个回答
相关问题
-
设f1(x)=[2/x+1],而fn+1(x)=f1[fn(x)],n∈N*,记an=fn(2)−1fn(2)+2,则数
-
设f1(x)=[2/1+x],fn+1(x)=f1[fn(x)],且an=fn(0)−1fn(0)+2,n∈N*,则a2
-
设f1(x)=[2/x+1,fn+1(x)=f1(fn(x)),an=fn(0)−1fn(0)+2,n∈N*
-
f1(x)=2/(1+x),f(x)=f1[fn(x)],an=[fn(0)-1]/[fn(0)+2],则a2010=?
-
设f1(x)=2/(1+x),定义f(n+1)(x)=f1[fn(x)],an=[fn(0)-1]/[fn(0)+2],
-
设f1(x)=2/(1+x),定义f(n+1)(x)=f1[fn(x)],an=[fn(0)-1]/[fn(0)+2]
-
设f1(x)=21+x,定义fn+1(x)=f1[fn(x)],an=fn(0)−1fn(0)+2,其中n∈N*,则数列
-
已知f(x)+x^2-2x+c,f1(x)=f(x),fn(x)=f(fn-1(x))(n>=2),若函数y=fn(x)
-
f(x)=|2x-1|,f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x)),则函数
-
f(x)=|2x-1|,f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x)),则函数