某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途经配货站C,甲车先到达C地,并在C地用

1个回答

  • (1)由图象可知,A、B两地的距离是300千米,甲车出发1.5小时到达C地;

    (2)由图象可知,乙的速度为v=30÷(2-1.5)=60,

    设甲的速度为v,依题意得:

    (v+60)×1.5=300-30,

    解得v=120,

    当2≤x≤2.5时,设y与x的函数关系式为:y=kx+b,

    2小时这一时刻,甲乙相遇;2到2.5小时,甲停乙车运动;

    则2.5小时时,两车相距30km,

    ∴D(2.5,30),

    2.5小时到3.5小时,两车都运动;

    则两车相距180+30=210,

    ∴E(3.5,210),

    3.5到5小时,甲走完全程,乙在运动.

    则两车相距:210+1.5×60=300,

    ∴F(5,300),

    把点(2,0),(2.5,30)代入,得y=60x-120,

    当2.5<x≤3.5时,设y与x的函数关系式为:y=mx+n,

    把点(2.5,30),(3.5,210)代入,得y=180x-420,

    把(3.5,210),(5,300)代入得y=60x,

    即y=

    60x-120(2≤x≤2.5)

    180x-420(2.5<x≤3.5)

    60x(3.5<x≤5) ;

    (3)把y=150代入y=180x-420中,得x=3

    1

    6 ,

    根据对称性可知,相遇前,相距150千米的时间

    为2-(3

    1

    6 -2)=

    5

    6 ,

    即乙车出发

    5

    6 小时或3

    1

    6 小时,两车相距150千米.

相关问题