∵f(x)=(mx^2+2)/(3x+n)是奇函数,且f(2)=5/3,∴f(-x)=-f(x),即有
(mx^2+2)/(-3x+n)=-(mx^2+2)/(3x+n).
故有-3x+n=-(3x+n),从而得到n=0.
又f(2)=(4m+2)/6=5/3,∴m=2.
故f(x)=(2x^2+2)/3x=(2/3)(x+1/x).
设x10,x1x2>0(∵x1
∵f(x)=(mx^2+2)/(3x+n)是奇函数,且f(2)=5/3,∴f(-x)=-f(x),即有
(mx^2+2)/(-3x+n)=-(mx^2+2)/(3x+n).
故有-3x+n=-(3x+n),从而得到n=0.
又f(2)=(4m+2)/6=5/3,∴m=2.
故f(x)=(2x^2+2)/3x=(2/3)(x+1/x).
设x10,x1x2>0(∵x1