设f(n)=1/(n+1)+1/(n+2)+…+1/(3n+1)
则f(n+1)-f(n)=1/(3n+2)+1/(3n+3)+1/(3n+4)-1/(n+1)>0
故f(n)单调增加,要使f(n)>a/24对一切正整数n都成立,
只要 f(1)=1/2+1/3+1/4>a/24 即a
设f(n)=1/(n+1)+1/(n+2)+…+1/(3n+1)
则f(n+1)-f(n)=1/(3n+2)+1/(3n+3)+1/(3n+4)-1/(n+1)>0
故f(n)单调增加,要使f(n)>a/24对一切正整数n都成立,
只要 f(1)=1/2+1/3+1/4>a/24 即a