解题思路:(1)连接EC,AD为△ABC的角平分线,得∠1=∠2,又AD⊥BE,可证∠3=∠4,由对顶角相等得∠4=∠5,即∠3=∠5,由E为
CF
的中点,得∠6=∠7,由BC为直径得∠E=90°,即∠5+∠6=90°,由AD∥CE可证∠2=∠6,从而有∠3+∠7=90°,证明结论;
(2)在Rt△ABC中,由勾股定理可求AC=5,由∠3=∠4得AM=AB=3,则CM=AC-AM=2,由(1)可证△CME∽△BCE,利用相似比可得EB=2EC,在Rt△BCE中,根据BE2+CE2=BC2,得BE2+([BE/2])2=42,可求BE.
(1)证明:连接EC,
∵AD⊥BE于H,∠1=∠2,
∴∠3=∠4(1分)
∵∠4=∠5,
∴∠4=∠5=∠3,(2分)
又∵E为
CF的中点,
∴
EF=
CE,
∴∠6=∠7,(3分),
∵BC是直径,
∴∠E=90°,
∴∠5+∠6=90°,
又∵∠AHM=∠E=90°,
∴AD∥CE,
∴∠2=∠6=∠1,
∴∠3+∠7=90°,
又∵BC是直径,
∴AB是半圆O的切线;(4分)
(2)∵AB=3,BC=4,
由(1)知,∠ABC=90°,
∴AC=
AB2+BC2=
32+42=5(5分)
在△ABM中,AD⊥BM于H,AD平分∠BAC,
∴AM=AB=3,
∴CM=2(6分)
∵∠6=∠7,∠E为公共角,
∴△CME∽△BCE,得[EC/EB]=[MC/CB]=[2/4]=[1/2],(7分)
∴EB=2EC,在Rt△BCE中,BE2+CE2=BC2,
即BE2+([BE/2])2=42,
解得BE=
8
5
5.(8分)
点评:
本题考点: 切线的判定与性质;勾股定理;圆周角定理;相似三角形的判定与性质.
考点点评: 本题考查了切线的判定与性质,相似三角形的判定与性质,圆周角定理,勾股定理的运用.关键是由已知条件推出相等角,构造互余关系的角推出切线,利用相等角推出相似三角形,由相似比得出边长的关系,由勾股定理求解.