设A(x1,y1),B(x2,y2)
有(y2-y1)/(x1-x2)=1
(y1+y2)/(x1+x2)=√2/2
将两点代入方程,两式相减有(y2-y1)(y1+y2)/{(x1-x2)(x1+x2)}=b²/a²
有b²/a²=√2/2
|AB|²=(x1-x2)²+(y1-y2)²=2(x1-x2)²=8
x1-x2=2
将y=1-x带入椭圆方程可求出
x1+x2=2a²/(a²+b²)=4/(2+√2)
x1x2=(1-b²)a²/(a²+b²)=2(1-b²)/(2+√2)
(x1-x2)²=(x1+x2)²-4x1x2=4
b²=3√2/2
a²=3
椭圆方程为x²/3+y²/(3√2/2)=1