令x+1/y=y+1/z=z+1/x=r,有
x=1/(r-z),y=r-1/z,
r=x+1/y=1/(r-z)+1/(r-1/z),化简,得
(r^2-1)z^2-(r^3-r)z+r^2-1=0
同理,有
(r^2-1)x^2-(r^3-r)x+r^2-1=0
(r^2-1)y^2-(r^3-r)y+r^2-1=0
所以有x,y,z都是方程(r^2-1)t^2-(r^3-r)t+r^2-1=0的根
而x≠y≠z,所以有方程恒为0,即r^2-1=r^3-r=0,r=1
即x+1/y=y+1/z=z+1/x=1
xy+1=y;yz+1=z;zx+1=x;
xy*yz*zx=(x-1)(y-1)(z-1)=xyz-xy-yz-zx+x+y+z-1=xyz,
而xyz≠0,故xyz=1
x^3 * y^3 * z^3 = 1