如图,三角形abc中,∠a=80度,bf和cf分别是三角形abc的两个外角∠cbd与∠bce的平分线,且交于点f.

1个回答

  • 1、

    ∵∠A=80,∠ABC=60

    ∴∠ACB=180-∠A-∠ABC=180-80-60=40

    ∴∠CBD=180-∠ABC=180-60=120,BCE=180-∠ACB=180-40=140

    ∵BF平分∠CBD

    ∴∠FBC=∠CBD/2=60

    ∵CF平分∠BCE

    ∴∠FCB=∠BCE/2=70

    ∴∠F=180-∠FBC-∠FCB=180-60-70=50

    2、

    ∵∠A+∠ABC+∠ACB=180

    ∴∠ABC+∠ACB=180-∠A

    ∵∠CBD=180-∠ABC,BF平分∠CBD

    ∴∠FBC=∠CBD/2=(180-∠ABC)/2=90-∠ABC/2

    ∵∠BCE=180-∠ACB,CF平分∠BCE

    ∴∠FCB=∠BCE/2=(180-∠ACB)/2=90-∠ACB/2

    ∴∠F=180-(∠FBC+∠FCB)

    =180-(90-∠ABC/2+90-∠ACB/2)

    =(∠ABC+∠ACB)/2

    =(180-∠A)/2

    ∵∠A=80

    ∴∠F=(180-80)/2=50