-根号2cosX a=-1
若函数f(x)=asinx-cosx(a为常数,a≠0,x属于R)在x=π/4时取得最小值,则函数y=f(π/4-x)的
1个回答
相关问题
-
已知函数f(x)=asinx-bcosx(a,b为常数,a≠0,x∈R)在x=π/4处取得最小值,则函数y=f(3π/4
-
函数f(x)=asinx-bcosx(a,b为常数,a≠0,x∈R)在x=π/4处有最小值,则函数y=f(3π/4-x)
-
已知函数f(x)=asinx-bcosx(a、b为常数,a≠0,x∈R)在x=π4处取得最小值,则函数y=f(3π4−x
-
已知函数f(x)=asinx-bcosx(a、b为常数,a≠0,x∈R)在x=π4处取得最小值,则函数y=f(3π4−x
-
已知函数f(x)=asinx-bcosx(a、b为常数,a≠0,x∈R)在x=π4处取得最小值,则函数y=f(3π4−x
-
已知函数f(x)=asinx-bcosx(a、b为常数,a≠0,x∈R)在x=π4处取得最小值,则函数y=f(3π4−x
-
已知函数f(x)=asinx-bcosx(a、b为常数,a≠0,x∈R)在x=π4处取得最小值,则函数y=f(3π4−x
-
函数f(x)=asinx-bcosx(a,b为常数,a≠0,x∈R)在x=π/4处有最小值,则
-
1.已知函数f(x)=asinx+bcosx(a,b为常数,a≠0,x∈R)在x=∏/4处取得最小值,则函数y=f(3∏
-
(2013•泰安一模)当x=π4时,函数f(x)=Asin(x+φ)(A>0)取得最小值,则函数y=f(3π4-x)是(