E(x)=∫[0,1]xdx∫[0,x]2dy=∫[0,1]2x^2dx=2/3
E(y)=∫[0,1]dx∫[0,x]2ydy=∫[0,1]x^2dx=1/3
E(x^2)=∫[0,1]x^2dx∫[0,x]2dy=∫[0,1]2x^3 dx=1/2
E(y^2)=∫[0,1]dx∫[0,x]2y^2dy=∫[0,1]2x^3/3dx=1/6
D(x)=E(x^2)-[E(x)]^2)=1/18
D(y)=1/18
E(xy)=∫[0,1]xdx∫[0,x]2ydy=∫[0,1]x^3dx=1/4
cov(x,y)=E(xy)-E(x)E(y)=1/36
相关系数ρ=0.5