设{a n }是首项为a,公差为d的等差数列(d≠0),S n 是其前n项和.记 b n = n S n n 2 +c

1个回答

  • 证明:(1)若c=0,则a n=a 1+(n-1)d, S n =

    n[(n-1)d+2a]

    2 , b n =

    n S n

    n 2 =

    (n-1)d+2a

    2 .

    当b 1,b 2,b 4成等比数列时,则 b 2 2 = b 1 b 4 ,

    即: (a+

    d

    2 ) 2 =a(a+

    3d

    2 ) ,得:d 2=2ad,又d≠0,故d=2a.

    因此: S n = n 2 a , S nk =(nk ) 2 a= n 2 k 2 a , n 2 S k = n 2 k 2 a .

    故: S nk = n 2 S k (k,n∈N*).

    (2) b n =

    n S n

    n 2 +c =

    n 2

    (n-1)d+2a

    2

    n 2 +c

    =

    n 2

    (n-1)d+2a

    2 +c

    (n-1)d+2a

    2 -c

    (n-1)d+2a

    2

    n 2 +c

    =

    (n-1)d+2a

    2 -

    c

    (n-1)d+2a

    2

    n 2 +c .①

    若{b n}是等差数列,则{b n}的通项公式是b n=A n+B型.

    观察①式后一项,分子幂低于分母幂,

    故有:

    c

    (n-1)d+2a

    2

    n 2 +c =0 ,即 c

    (n-1)d+2a

    2 =0 ,而

    (n-1)d+2a

    2 ≠0 ,

    故c=0.

    经检验,当c=0时{b n}是等差数列.