解题思路:纸板绕O点旋转到如图所示的位置,作OM⊥AB于M,ON⊥AD于N,根据正方形的判定与性质易得四边形OMAN为正方形,得到OM=ON=[1/2]a,∠1+∠3=90°,利用等角的余角相等得∠1=∠2,再根据“AAS”证明△OME≌△ONF,则S△OME=S△ONF,于是得到S四边形AEOF=S正方形AMON=[1/4]a2.
正方形被纸板覆盖部分的面积不发生变化.理由如下:
纸板绕O点旋转到如图所示的位置,作OM⊥AB于M,ON⊥AD于N,
∵O是边长为a的正方形ABCD的中心,
∴四边形OMAN为正方形,
∴OM=ON=[1/2]a,∠1+∠3=90°,
而∠2+∠3=90°,
∴∠1=∠2,
在△OME和△ONF中,
∠OME=∠ONF
∠1=∠2
OM=ON,
∴△OME≌△ONF(AAS),
∴S△OME=S△ONF,
∴S四边形AEOF=S正方形AMON=[1/2]a•[1/2]a=[1/4]a2,
即正方形被纸板覆盖部分的面积不发生变化,总是等于正方形ABCD面积的[1/4].
点评:
本题考点: 旋转的性质.
考点点评: 本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形的性质.