an=logn+1(n+2),
∴由a1•a2•ak为整数得,log23•log34…log(k+1)(k+2)=log2(k+2)为整数,
设log2(k+2)=m,则k+2=2m,∴k=2m-2; 因为211=2048>2010,
∴区间[1,2010]内所有希望数为22-2,23-2,24-2,,210-2,
其和M=22-2+23-2+24-2+…+210-2=2026.
故选A.
an=logn+1(n+2),
∴由a1•a2•ak为整数得,log23•log34…log(k+1)(k+2)=log2(k+2)为整数,
设log2(k+2)=m,则k+2=2m,∴k=2m-2; 因为211=2048>2010,
∴区间[1,2010]内所有希望数为22-2,23-2,24-2,,210-2,
其和M=22-2+23-2+24-2+…+210-2=2026.
故选A.