又∵由抛物线经过C(-2,6),∴6=a(-2+4)(-2-1),解得:a=-1.
∴经过A、B、C三点的抛物线解析式为:y=-(x+4)(x-1),即y=-x2-3x+4.
(2)证明:设直线BC的函数解析式为y=kx+b,
由题意得:,解得:.
∴直线BC的解析式为y=-2x+2.
∴点E的坐标为(0,2).
∴.
∴AE=CE.
(3)相似.理由如下:
设直线AD的解析式为y=k1x+b1,则 ,解得:.
∴直线AD的解析式为y=x+4.
联立直线AD与直线BC的函数解析式可得:,解得:.
∴点F的坐标为( ).
则.
又∵AB=5,
∴.∴.
又∵∠ABF=∠CBA,∴△ABF∽△CBA.
∴以A、B、F为顶点的三角形与△ABC相似.
【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,勾股定理,相似三角形的判定.
【分析】(1)利用待定系数法求解即可得出抛物线的解析式.
(2)求出直线BC的函数解析式,从而得出点E的坐标,然后分别求出AE及CE的长度即可证明出结论.
(3)求出AD的函数解析式,然后结合直线BC的解析式可得出点F的坐标,根据勾股定理分别求出BF,BC 得出;由题意得∠ABF=∠CBA,即可作出判断.