1+b2+.+bn=(1+2+.n)bn=n(n+1)bn/2b1+b2+b3+...+bn-1=bn(n+2)(n-1)/2 b1+..+bn-2=bn-1(n+1)(n-2)/2 bn-1=bn(n+2)(n-1)/2-bn-1(n+1)(n-2)/2 bn-1(n-1)n/2=bn(n+2)(n-1)/2 bn/bn-1=n/(n+2) bn=bn/bn-1*bn-1/bn-2*.*b1 =n/(n+2)*(n-1)/(n+1)*.*2/4*2009 =6*2009/(n+1)(n+2) =2009*6/(n+1)(n+2) b2008=6/2010=3/1005
设数列{bn}满足b1=2009,对n>1,b1+b2+.+bn=(1+2+.+n)bn,则b2008=
2个回答
相关问题
-
已知数列{bn}满足b1=-1,b(n+1)=bn+(2n-1),求bn
-
设A1=2,A2=4,数列{Bn}满足:Bn=A(n+1)-An,B(n+1)=3Bn+2
-
已知数列﹛bn﹜满足b1﹦-1,bn﹢1﹦bn+(2n-1)(n∈N﹡).求数列﹛bn﹜的通项公式bn.
-
急 设A1=2,A2=4,数列Bn满足:Bn=A(n+1)-An,B(n+1)=2Bn +2
-
若数列{bn}满足:bn+1=bn^2-(n-2)bn + 3,且b1≥1,n∈N*,用数学归纳法证明:bn≥n
-
已知数列{bn}满足b1=1,b(n+1)=2bn+2,求证{bn+2}是等比数列
-
若数列bn满足b1=2,且bn+1=bn+2^n+n,求数列bn的通项公式.
-
设数列bn满足:b1=1/2,bn+1=bn^2+bn1)求证:bn+1/1=bn/1-bn+1/1 2)若tn=b1+
-
已知数列{bn},bn=2^(n+2)+2n-1,求b1+b2+b3+.+bn