答:
f(k)=4k+ 1/(2k+3)²
f(k)=(2k+3)+(2k+3)+1/(2k+3)² -6
>=3³√[(2k+3)*(2k+3)*1/(2k+3)²]-6
=3-6
=-3
当且仅当2k+3=1/(2k+3)²即2k+3=1即k=-1时取得最小值
因为:k>0
所以:f(k)是k的单调递增函数
所以:f(k)不存在最大值,也不存在最小值
答:
f(k)=4k+ 1/(2k+3)²
f(k)=(2k+3)+(2k+3)+1/(2k+3)² -6
>=3³√[(2k+3)*(2k+3)*1/(2k+3)²]-6
=3-6
=-3
当且仅当2k+3=1/(2k+3)²即2k+3=1即k=-1时取得最小值
因为:k>0
所以:f(k)是k的单调递增函数
所以:f(k)不存在最大值,也不存在最小值