解析:如图,连接OD、OE,构建等边△OBD、△ODE、△OEC;然后由等边三角形的性质和圆心角、弧、弦的关系证得BD=DE=EC.
证明:如图,连接OD、OE.
∵△ABC是等边三角形,
∴∠B=60°.
又∵OB=OD,
∴△OBD是等边三角形,
∴∠BOD=60°.
同理,△EOC是等边三角形,则∠EOC=60°.
∵BC是⊙O的直径,
∴∠DOE=180°-∠BOD-∠EOC=60°,
1.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半.
2.圆周角定理推论:
(1)半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径;
(2)在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.
3.拓展:如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.
手机提问的朋友在客户端右上角评价点【满意】即可.