∵a、b ∈ R+
∴b/a^3,a/b^3,1/a^2,1/b^2 ∈ R+
∴b/a^3+a/b^3,1/a^2+1/b^2 ∈ R+
【b/a^3+a/b^3】/【1/a^2+1/b^2】
分子分母同乘以ab:
= 【b^2/a^2+a^2/b^2】/【b/a+a/b】
= 【(b/a+a/b)^2-2】/【b/a+a/b】
= (b/a+a/b) - 2/(b/a+a/b)
根据A、B∈R+时,A+B≥2√(AB)
b/a+a/b≥2√(b/a*a/b)=2
2/(b/a+a/b)≤2/2=1
∴(b/a+a/b) - 2/(b/a+a/b)≥2-1=1
∴【b/a^3+a/b^3】/【1/a^2+1/b^2】=(b/a+a/b) - 2/(b/a+a/b)≥1
∴b/a^3+a/b^3 ≥ 1/a^2+1/b^2