证明一:
令f(t)=tlnt (t>0)
求导得:
f'(t)=lnt+1
再次求导得:
f''(t)=1/t>0
所以:f(t)是凹函数
所以:[f(x)+f(y)]/2>f[(x+y)/2]
所以:(xlnx+ylny)/2>(x+y)/2*ln[(x+y)/2]
所以:xlnx+ylny>(x+y)ln[(x+y)/2]
证明二:
xlnx+ylny-xln(x+y)-yln(x+y)-(x+y)ln(1/2)
=xln[x/(x+y)]+yln[y/(x+y)]-(x+y)ln(1/2)
=-xln(1+y/x)-yln(1+x/y)-(x+y)ln(1/2)
=-x[ln(1+y/x)+y/xln(1+z/y)-(1+y/x)ln2]
令y/x=t
即证:
ln(1+t)+tln(1+1/t)-(1+t)ln2x,即t>1
构造f(t)=ln(1+t)+tln(1+1/t)-(1+t)ln2
求导f'(t)=ln(1+t)-lnt-ln2=ln(1+1/t)-ln2