证明:∵平行四边形ABCD
∴AD‖BC AB=CD
∴∠EGB=∠GBC ∠GEC=∠ECB
∵CE和BG分别为∠BCD和∠ABC的平分线
∴∠ABG=∠GBC ∠BCE=∠DCE
∴∠ABG=∠EGB ∠DCE=∠GEC
∴AB=AG DC=DE
∴AG=ED
∴AE=AG-EG DG=DE-DG
∴AE=DG
证明:∵平行四边形ABCD
∴AD‖BC AB=CD
∴∠EGB=∠GBC ∠GEC=∠ECB
∵CE和BG分别为∠BCD和∠ABC的平分线
∴∠ABG=∠GBC ∠BCE=∠DCE
∴∠ABG=∠EGB ∠DCE=∠GEC
∴AB=AG DC=DE
∴AG=ED
∴AE=AG-EG DG=DE-DG
∴AE=DG