请教一道微分方程(x-2xy-y^2)y'+y^2=0求通解.

3个回答

  • (x-2xy-y²)y' + y² = 0

    (x-2xy-y²)dy + y²dx = 0

    xdy - xd(y²) - y²dy + y²dx = 0

    (x-y²)dy = xd(y²) - y²dx = x²d(y²/x)

    (1 - y²/x)dy = xd(y²/x)

    令y²/x = u,即x = y²/u

    代入得

    (1-u)dy = y²du/u

    即dy/y² = du/[u(1-u)] = du/u + du/(1-u)

    积分得

    -1/y = ln|u/(1-u)| + C

    |u/(1-u)| = Ce^(-1/y)

    u = 1/[1±Ce^(1/y)]

    x = y²[1+Ce^(1/y)](C是任意常数,加或减一个任意常数都可用+C表示)

    这是通解