u=arctanx,v=x
u'=1/(1+x^2),v'=1
原式=∫arctanx×(x)'dx
=∫uv'dx
=uv-∫u'vdx
=xarctanx-∫[x/(1+x^2)]dx
(下面使用凑微分法)
=xarctanx-(1/2)∫[1/(1+x^2)]d(1+x^2)
=xarctanx-(1/2)ln(1+x^2)+C
u=arctanx,v=x
u'=1/(1+x^2),v'=1
原式=∫arctanx×(x)'dx
=∫uv'dx
=uv-∫u'vdx
=xarctanx-∫[x/(1+x^2)]dx
(下面使用凑微分法)
=xarctanx-(1/2)∫[1/(1+x^2)]d(1+x^2)
=xarctanx-(1/2)ln(1+x^2)+C