广义积分如果f(x)在1到正无穷上的积分收敛,且当x趋近于正无穷时,f(x)的极限为A,证明A=0
1个回答
不妨取积分列为f(x)在1到{2,3,4,...n,...}上的积分,记为Fn.
根据题意,也有对任意的c>0,存在N,使得n>N时有|f(n)-A|
相关问题
广义积分收敛问题!若f(x)在(-无穷,+无穷)上连续,且∫f(x)dx(-无穷,+无穷)收敛证明:∫f(x-1/x)d
函数f(x)在(a,+∞)上可导,且x趋近正无穷时,f(x)趋近于0,则必有x趋近正无穷时,f'(x)趋近于0,证明是错
如果f(x)在[a,无穷)上单减,在[a,无穷)上的积分:(积分号)f(x)dx收敛,证明x趋向于无穷时lim xf(x
设f'(x)在【a,b】连续,证明:limt趋近于正无穷 定积分 a到b f(x)costx
证明 若f 在 a到正无穷 上一致连续 且∫(a到正无穷) f(x)dx收敛,则 lim (x趋于正无穷)f(x)=0
sin(x^2)在0到正无穷上的广义积分是否收敛
设f(x)在[1,正无穷)上非负递增,并且积分[f(x)-x]/x从1到正无穷对x积分,证明极限f(x)/x=1(x趋于
广义积分的敛散性不是说发散加发散可以收敛吗?比如x和-x,在x趋近于正无穷时.但是书上关于广义积分那一节,积分上限为正无
f(x)是零到正无穷上的正值连续函数,且1/f(x)在零到正无穷上的积分小于正无穷,
设函数f(x)在正无穷到负无穷连续,x趋于正无穷时f(x)/x的极限=趋于负无穷时f(x)/x的极限=0,证明