(1)把直线方程代入椭圆方程,整理得(a^2+b^2)x^2+2a^2x+a^2-a^2b^2=0,
△/4=a^2b^2(a^2+b^2-1)>0,.∴a^2+b^2>1.
(2)F(-1,0),b^2=a^2-1,由AF=2FB得x1+a^2=2(x2+a^2),
a^2=9/8,b^2=1/8.
8x^2/9+8y^2=1.
(1)把直线方程代入椭圆方程,整理得(a^2+b^2)x^2+2a^2x+a^2-a^2b^2=0,
△/4=a^2b^2(a^2+b^2-1)>0,.∴a^2+b^2>1.
(2)F(-1,0),b^2=a^2-1,由AF=2FB得x1+a^2=2(x2+a^2),
a^2=9/8,b^2=1/8.
8x^2/9+8y^2=1.