F1*cosA+F2*cosB+F3*cosC=0

2个回答

  • F1cosA+F2cosB+F3cosC=0……(1)

    F1sinA+F2sinB+F3sinC=0……(2)

    F1sinA-F2sinB-1.575F3cosC=0……(3)

    (1)×1.575+(3):

    F1(sinA+1.575cosA)-F2(sinB-1.575cosB)=0

    F1√(1+1.575^2)sin(A+arccot1.575)-F2√(1+1.575^2)sin(B-arccot1.575)=0

    F1sin(A+arccot1.575)-F2sin(B-arccot1.575)=0……(4)

    由(2)、(3):

    sinC=-(F1sinA+F2sinB)/F3

    cosC=(F1sinA-F2sinB)/(1.575F3)

    因(sinC)^2+(sinC)^2=1

    所以

    (1+1.575^2)(F1)^2(sinA)^2+(1+1.575^2)(F2)^2(sinB)^2+2(-1+1.575^2)(F1F2sinAsinB=(1.575F3)^2

    (F1)^2(sinA)^2+(F2)^2(sinB)^2+0.851F1F2sinAsinB=0.713(F3)^2……(5)

    无法求