设三角形ABC的内角ABC所对的边分别为abc,若sin^2A+sin^2C-根号3sinAsinC=sin^2B

1个回答

  • 郭敦顒回答:

    (1)∵在△ABC中,sin²A+sin²C-√3sinAsinC=sin²B,这一定是含有60°和30°的Rt⊿中的三角函数关系,在√3sinAsinC中∠A和∠B其一为直角,另一角为60°角从而 “√3sinAsinC”为有理数,“sin²B”为有理数,

    设∠C=90°,∠A=60°,∴∠B=30°,

    ∴sin²A+sin²C-√3sinAsinC=3/4+1-3/2=1/4=sin²B,无误

    ∴∠B=30°.

    (2)设f(x)=2sin(2x+B)+4cos^2x,求函数y=f(x)在区间[0,π/2]的值域.

    按上∠B=30°,

    当x=0时,y=f(x)=2sin(2x+B)+4cos²x=1+4=5,

    当x=π/2时,y=f(x)=2sin(2x+B)+4cos²x=-1+0=-1,

    当x=30°时,y=f(x)=2sin(2x+B)+4cos²x=2+3=5,

    当x=60°时,y=f(x)=2sin(2x+B)+4cos²x=1+1=2,

    当x=24°时,y=f(x)=2sin(2x+B)+4cos²x=1.956+3.338=5.294,

    当x=20°时,y=f(x)=2sin(2x+B)+4cos²x=1.8794+3.5321=5.4115,

    当x=16°时,y=f(x)=2sin(2x+B)+4cos²x=1.766+3.6961=5.4621,

    当x=14°时,y=f(x)=2sin(2x+B)+4cos²x=1.6961+3.7659=5.4620,

    当x=15°时,y=f(x)=2sin(2x+B)+4cos²x=1.7321+3.7320=5.46415,

    ∴当x=15°时,有maxy=f(x)=5.46415,

    ∴函数y=f(x)在区间[0,π/2]的值域是[-1,5.46415]