cosA=4/5 sinA=√[1-(4/5)²]=3/5
sinC=sin(π-A-B)=sin(A+B)
=sinAcosB+cosAsinB
=(3/5)cos(π/3)+(4/5)sin(π/3)
=(3/5)(1/2)+(4/5)(√3/2)
=(3+4√3)/10
由正弦定理,a/sinA=b/sinB
a=bsinA/sinB=(3/5)√3/(√3/2)=6/5
S△ABC=(1/2)absinC=(1/2)(6/5)(√3)(3+4√3)/10=9(4+√3)/50
cosA=4/5 sinA=√[1-(4/5)²]=3/5
sinC=sin(π-A-B)=sin(A+B)
=sinAcosB+cosAsinB
=(3/5)cos(π/3)+(4/5)sin(π/3)
=(3/5)(1/2)+(4/5)(√3/2)
=(3+4√3)/10
由正弦定理,a/sinA=b/sinB
a=bsinA/sinB=(3/5)√3/(√3/2)=6/5
S△ABC=(1/2)absinC=(1/2)(6/5)(√3)(3+4√3)/10=9(4+√3)/50