如图,在以⊙O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A,于大圆相交于点D,且CO平分∠ACB

2个回答

  • (1)BC所在直线与小圆相切.过点O作oE垂直BC,垂足为E.因为cA是圆O的切线,所以OA垂直AC,因为CO平分∠ACB,oE垂直BC,所以OE=OA,所以BC所在直线与小圆相切.

    (2)AC+AD=BC,连接OD

    因为cA是圆O的切线,所以OA垂直AC,所以∠OAD=90,同理可证:∠OEB=90,所以∠OAD=∠OEB=90,证直角△OAD全等于直角△OEB(HL),所以AD=AE.同理可证:直角△OAC全等于直角△OEC(HL),所以AC=AE,所以AC+AD=BC

    (3)因为BC=AC+AD,BC=10,AC=6,所以AD=4,所以S=π*OD的平方-π*OA的平方=π*AD的平方=16π