解题思路:(I)连接AC交BD于O,连接EO.在△PCA中,根据中位线定理得到OE∥PA.再结合直线与平面平行的判定定理,可证出PA∥平面BDE.
(II)过D作PA的垂线,垂足为H,则△PAD以PA为轴旋转所围成的几何体为DH为半径,分别以PH,AH为高的两个圆锥的组合体.利用锥体的体积计算公式,结合题中条件不难求出DH的长,从而算出该几何体的体积.
(I)连接AC交BD于O,连接EO.
∵ABCD是正方形,∴O为AC中点,
∵E为PA的中点,∴OE∥PA.
又∵OE⊂平面BDE,PA⊄平面BDE,
∴PA∥平面BDE.
(II)过D作PA的垂线,垂足为H,则
△PAD以以PA为轴旋转所围成的几何体为DH为半径,分别以PH,AH为高的两个圆锥的组合体
∵侧棱PD⊥底面ABCD,AD⊆底面ABCD
∴PD⊥AD,
∵PD=4,DA=DC=3,∴PA=5,DH=
PD•DA
PA=
4×3
5=
12
5
所以,该几何体的体积为:V=
1
3πDH2•PH+
1
3πDH2•AH
=
1
3πDH2•PA=
1
3π×(
12
5)2×5=
48
5π.
点评:
本题考点: 棱柱、棱锥、棱台的体积;直线与平面平行的判定.
考点点评: 本题给出特殊四棱锥,求证线面平行并且求旋转体的体积,着重考查了线面平行的判定、线面垂直的性质和棱锥的体积公式等知识,属于基础题.