1
1×2 +
1
2×3 +
1
3×4 +
1
4×5
=1-
1
2 +
1
2 -
1
3 +
1
3 -
1
4 +
1
4 -
1
5
=1-
1
5
=
4
5 ;
1
1×2 +
1
2×3 +
1
3×4 +
1
4×5 +…+
1
99×100
=1-
1
2 +
1
2 -
1
3 +
1
3 -
1
4 +
1
4 -
1
5 +…+
1
99 -
1
100
=1-
1
100
=
99
100 ;
1
1×2 +
1
2×3 +
1
3×4 +
1
4×5 +…+
1
n×(n+1)
=1-
1
2 +
1
2 -
1
3 +
1
3 -
1
4 +
1
4 -
1
5 +…+
1
n -
1
n+1
=1-
1
n+1
=
n
n+1 ;
1
1×3 +
1
3×5 +
1
5×7 +…+
1
99×101
=
1
2 ×(1-
1
3 +
1
3 -
1
5 +…+
1
99 -
1
101 )
=
1
2 ×(1-
1
101 )
=
1
2 ×
100
101
=
50
101 .
故答案为:
4
5 ;
99
100 ;
n
n+1 .