如图所示,在△ABC中,△ABC的内角平分线或外角平分线交于点P,试探求下列各图中∠A与∠P的关系并加以说明

1个回答

  • 图(1)∠P=180°-1/2∠ABC-1/2∠ACB

    =180°-1/2(∠ABC+1/2∠ACB)

    =180°-1/2(180°-∠A)

    =180°-90°+1/2∠A

    =90°+1/2∠A

    图(2)BC延长至点E,假设AC线和BP线相交,交点为D.

    ∠A=180°-∠ADB-1/2∠ABC

    =180°-∠ADB-1/2(180°-∠A-∠ACB)

    =180°-∠ADB-90°+1/2∠A+1/2∠ACB

    1/2∠A =90°-∠ADB+1/2∠ACB

    ∠A =180°-2∠ADB+∠ACB

    同样道理

    ∠P =180°-∠PDC-1/2∠ACE

    =180°-∠PDC-1/2(180°-∠ACB)

    =180°-∠PDC-90°+1/2∠ACB

    =90°-∠PDC+1/2∠ACB

    由于∠ADB=∠PDC

    所以∠A =180°-2∠PDC+∠ACB

    而∠P =90°-∠PDC+1/2∠ACB

    所以∠A =2∠P

    图(3)

    ∠P=180°-∠CBP-∠BCP

    =180°-1/2(180°-∠ABC)-1/2(180°-∠ACB)

    =180°-90°+1/2∠ABC-90°+1/2∠ACB

    =1/2∠ABC+1/2∠ACB

    =1/2(∠ABC+∠ACB)

    =1/2(180°-∠A)

    =90°-1/2∠A