∵AG∥EF,∴AC/CE=CG/CF、BD/AB=BF/BG.两式相乘,得:
(BD/CE)(AC/AB)=(CG/BG)(BF/CF).
而BF=CF,∴(BD/CE)(AC/AB)=(CG/BG).······①
又∠CAG=BAG,∴由三角形内角平分线定理,有:AC/AB=CG/BG.······②
①÷②,得:BD/CE=1,∴BD=CE.
∵AG∥EF,∴AC/CE=CG/CF、BD/AB=BF/BG.两式相乘,得:
(BD/CE)(AC/AB)=(CG/BG)(BF/CF).
而BF=CF,∴(BD/CE)(AC/AB)=(CG/BG).······①
又∠CAG=BAG,∴由三角形内角平分线定理,有:AC/AB=CG/BG.······②
①÷②,得:BD/CE=1,∴BD=CE.