解题思路:(1)将点A(6,0)代入直线AB的解析式,可得b的值,继而可得点B的坐标;
(2)设BC的解析式是y=ax+c,根据B点的坐标,求出C点坐标,把B,C点的坐标分别代入求出a和c的值即可;
(3)过E、F分别作EM⊥x轴,FN⊥x轴,则∠EMD=∠FND=90°,有题目的条件证明△NFD≌△EDM,进而得到FN=ME,联立直线AB:y=-x-b和y=2x-k求出交点E和F的纵坐标,再利用等底等高的三角形面积相等即可求出k的值;
(1)将点A(6,0)代入直线AB解析式可得:0=-6-b,
解得:b=-6,
∴直线AB 解析式为y=-x+6,
∴B点坐标为:(0,6).
(2)∵OB:OC=3:1,
∴OC=2,
∴点C的坐标为(-2,0),
设BC的解析式是y=ax+c,代入得;
-2a+c=0
c=6,
解得:
a=3
c=6,
∴直线BC的解析式是:y=3x+6.
(3)过E、F分别作EM⊥x轴,FN⊥x轴,则∠EMD=∠FND=90°.
∵S△EBD=S△FBD,
∴DE=DF.
又∵∠NDF=∠EDM,
∴△NFD≌△EDM,
∴FN=ME,
联立得
y=2x-k
y=-x+6,
解得:yE=-[1/3]k+4,
联立
y=2x-k
y=3x+6,
解得:yF=-3k-12,
∵FN=-yF,ME=yE,
∴3k+12=-[1/3]k+4,
∴k=-2.4;
当k=-2.4时,存在直线EF:y=2x-2.4,使得S△EBD=S△FBD.
点评:
本题考点: 一次函数综合题.
考点点评: 本题考查了一次函数的综合,涉及了待定系数法求函数解析式、两直线的交点及三角形的面积,综合考察的知识点较多,注意基本知识的掌握,将所学知识融会贯通,难度较大.