当a>1时,f(x)在[0,1]上单调递增
f(x)max=f(1)=a+log(a)2
f(x)min=f(0)=1
a+log(a)2+1=a
解得:a=1/2<1,舍去
当0<a<1时,f(x)在[0,1]上单调递减
f(x)min=f(1)=a+log(a)2
f(x)max=f(0)=1
a+log(a)2+1=a
解得:a=1/2
当a>1时,f(x)在[0,1]上单调递增
f(x)max=f(1)=a+log(a)2
f(x)min=f(0)=1
a+log(a)2+1=a
解得:a=1/2<1,舍去
当0<a<1时,f(x)在[0,1]上单调递减
f(x)min=f(1)=a+log(a)2
f(x)max=f(0)=1
a+log(a)2+1=a
解得:a=1/2