无穷等比数列﹛tan^na﹜ 设﹣π/2< a<π/2
1.
①tana≠∞ a≠±π/2 ﹛K为整数﹜
②tana≠1 a≠±π/4 ﹛K为整数﹜
∴若它各项和Sn存在; tana<1 ﹣π/4< a<π/4
∴Sn=tana/﹙1﹣tana﹚
2.
Sn=tana/﹙1﹣tana﹚=﹙√3+1﹚/2
∴tana=√3/3
∴a=π/6
无穷等比数列﹛tan^na﹜ 设﹣π/2< a<π/2
1.
①tana≠∞ a≠±π/2 ﹛K为整数﹜
②tana≠1 a≠±π/4 ﹛K为整数﹜
∴若它各项和Sn存在; tana<1 ﹣π/4< a<π/4
∴Sn=tana/﹙1﹣tana﹚
2.
Sn=tana/﹙1﹣tana﹚=﹙√3+1﹚/2
∴tana=√3/3
∴a=π/6