因为 z1 =1 +cos θ +i sin θ,
z2 =1 -sin θ +i cos θ,
所以 |z1|^2 =(1 +cos θ)^2 +(sin θ)^2
=1 +2 cos θ +(cos θ)^2 +(sin θ)^2
=2 +2 cos θ,
|z2|^2 =(1 -sin θ)^2 +(cos θ)^2
=1 -2 sin θ +(sin θ)^2 +(cos θ)^2
=2 -2 sin θ.
所以 |z1|^2 +|z2|^2 =4 +2 (cos θ -sin θ)
=4 +2√2 (cos θ cos π/4 -sin θ sin π/4)
=4 +2√2 cos (θ +π/4).
又因为 |z1|^2 +|z2|^2 ≥2,
所以 4 +2√2 cos (θ +π/4) ≥2,
即 cos (θ +π/4) ≥ -√2 /2.
所以 θ +π/4 ∈[ -3π/4 +2kπ, 3π/4 +2kπ ], k∈Z.
所以 θ∈[ -π +2kπ, π/2 +2kπ ], k∈Z.
= = = = = = = = =
以上计算可能有误.
注意:
(1) 若 z =a +bi, a,b∈R,
则 |z|^2 =a^2 +b^2.
|z|^2 和 z^2 是不同的.
(2) 不小于2,即 ≥2 .
(3) cos (θ +π/4) ≥ -√2 /2.
作出 y =cos x 与 y= -√2 /2 的函数图象,可得
θ +π/4 ∈[ -3π/4 +2kπ, 3π/4 +2kπ ], k∈Z.