(1)、
根据已知条件和抛物线的顶点坐标,可得以下三式
a-b+c=0
-b/2a=1
(4ac-b^2)/(4a)=-4
解之得,
a=1
b=-2
c=-3
解析式为y=x^2-2x-3
x2=3
B点坐标(3,0)
C点坐标为(0,-3)
(2)
设Q点坐标为(x,y),则
QC^2=x^2+(y+3)^2
QB^2=(x-3)^2+y^2
QC=QB
x^2+(y+3)^2=(x-3)^2+y^2
y=x^2-2x-3
解之得,
x1=(1+√13)/2,x2=(1-√13)/2
y1=-(1+√13)/2,y2=-(1-√13)/2
Q点坐标(x1,y1)或(x2,y2) x1,y1,x2,y2数据太复杂,你自己代进去吧
(3)
y=ax^2+bx+c
因为x2=1,y=0
所以a+b+c=0
则c=-a-b
因为a>b>c,
所以3a>a+b+c=0
所以a>0
由a>b>c和c=-a-b,可以得到
a>b>-a-b
二边同除以a,得
1>b/a>-1-b/a,即
b/a-1-b/a,即 b/a>-1/2
所以
-1/2