(1)设OA=X,OB=Y,则X²+Y²=AB²=64.
∵4XY=(X+Y)²-(X-Y)²;
4XY=2XY+X²+Y²-(X-Y)²;
4XY=2Xy+64-(X-Y)².
∴2XY=64-(X-Y)².
则当X-Y=0即X=Y时,64-(X-Y)²有最大值.
X²+Y²=2X²=64,则X=4√2,Y=4√2.
即当OA=OB=4√2时,△AOB面积最大.
(2)当X=Y时,X-Y=0,则2XY=64-0²=64.
故2XY最大值也为64,则(1/2)XY最大值为16.
又S△AOB=OA*OB/2=(1/2)XY,所以△AOB面积的最大值为16.