设f(x)=e^x-1+o(x),且f(0)=0,则f '(0)=____
1个回答
o(x)代表x的高阶无穷小
则o(x)可以表示x^2,x^3等等
f‘(x)=e^x+ax^(a-1)
f‘(0)=e^0+a0^(a-1)=1
相关问题
设f'(x)=1-x,且f(0)=1,则f(x)=
设f(x)的原函数F(x)>0,且f(x)F(x)=1/(e^x+e^-x),F(0)=√(π/2),求证f(x)=e^
设f(0)=0,且f ' (0)=1,则limx→0 f(x)/(sin5x)=
d[e^(-x)f(x)]=e^xdx ,且f(0)=0,则f(x)=
设f(x)=x^n•sin(1/x) (x≠0),且f(0)=0,则f(x)在x=0处( )
设函数f(x)在x=0点可导,且f(0)=0,f‘(0)=1,则limx—0 f(x)/x=?
设f(x)可导,且f`(0)=0,lim(f`(x)/x)=2,则f(0)
设F(x)=∫(0,x)e^(-t)costdt,则F‘(0)=
设f'(x)=cosx/(1+sinx^2),且f(0)=0,则∫f'(x)/(1+f(x)^2)dx=
设f(x)二阶可导,且f(0)=0,f′(0)=1,f″(0)=2,则limx→0f(x)−xx2=______.