由最小值,可知f(x)=a(x-3/2)^2-3/4,且a>0
f(x)=a(x^2-3x+9/4)-3/4=ax^2-3ax+(9a-3)/4
x1+x2=3a/a=3
x1x2=(9a-3)/(4a)
9=x1^3+x2^3=(x1+x2)(x1^2-x1x2+x2^3)=(x1+x2)[(x1+x2)^2-3x1x2]=3[9-3(9a-3)/(4a)]
1=3-(9a-3)/(4a)
解得a=3
因此f(x)=3x^2-9x+6
由最小值,可知f(x)=a(x-3/2)^2-3/4,且a>0
f(x)=a(x^2-3x+9/4)-3/4=ax^2-3ax+(9a-3)/4
x1+x2=3a/a=3
x1x2=(9a-3)/(4a)
9=x1^3+x2^3=(x1+x2)(x1^2-x1x2+x2^3)=(x1+x2)[(x1+x2)^2-3x1x2]=3[9-3(9a-3)/(4a)]
1=3-(9a-3)/(4a)
解得a=3
因此f(x)=3x^2-9x+6