取坐标系,D﹙000﹚,A﹙200﹚,C﹙020﹚,D1﹙002﹚
则B﹙220﹚C1﹙012﹚,B1﹙112﹚
(1)求直线DB1与BC1夹角α的余弦值;
DB1=﹛1,1,2﹜.BC1=﹛-2,-1,2﹜
cosα=DB1•BC1/﹙|DB1|×|BC1|﹚=1/﹙3√6﹚
(2)求二面角A-BB1-C的余弦值.
AB=﹛0,2,0﹜.CB=﹛2,0,0﹜,B1B=﹛1,1,-2﹜
ABB1法发现n1=AB×B1B=﹛-4,0,-2﹜
CBB1法发现n2=CB×B1B=﹛0,4,2﹜
cos﹤n1,n2﹥=n1•n2/﹙|n1|×|n2|﹚=-4/20=-1/5
二面角A-BB1-C的余弦值=-1/5