一阶微分方程y'=2((y+2)/(x+y-1))^2

1个回答

  • 设m=y+2,n=x-3

    ∴代入原方程得dm/dn=2[m/(m+n)]²

    ==>dm/dn=2/(1+n/m)².(1)

    再设n/m=t,则dn=tdm+mdt

    ∴代入方程(1)得dm/(tdm+mdt)=2/(1+t)²

    ==>t+mdt/dm=(1+t)²/2

    ==>mdt/dm=(1+t²)/2

    ==>2dt/(1+t²)=dm/m

    ==>2arctant=ln│m│-ln│C│ (C是积分常数)

    ==>e^(2arctant)=m/C

    ==>m=Ce^(2arctan(n/m))

    ==>y+2=Ce^(2arctan((x-3)/(y+2))

    故原方程的通解是y+2=Ce^(2arctan((x-3)/(y+2)) (C是积分常数).